

Tetrahedron Letters 42 (2001) 3791-3794

TETRAHEDRON LETTERS

Montmorillonite K 10-catalyzed regioselective addition of thiols and thiobenzoic acids onto olefins: an efficient synthesis of dithiocarboxylic esters

Subbareddy Kanagasabapathy, Arumugam Sudalai and Brian C. Benicewicz*

NYS Center for Polymer Synthesis and Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Received 23 October 2000; revised 24 March 2001; accepted 26 March 2001

Abstract—The addition of thiols and thiobenzoic acids onto olefins proceeded regioselectively in a Markovnikov manner in the presence of Montmorillonite K 10 (Mont K 10) clay as the catalyst to afford thioethers and thiocarboxylic S-esters, while high selectivity to anti-Markovnikov products was realized in the absence of any catalyst. Treatment of the esters with Lawesson's reagent provided the corresponding dithiocarboxylic esters in high yields. © 2001 Elsevier Science Ltd. All rights reserved.

The addition of thiols onto carbon-carbon double bonds may proceed via an electrophilic pathway involving ionic processes or a free-radical-chain pathway.¹ The main emphasis in the literature has been on the free-radical pathway² and little work exists on the electrophilic pathway. The electrophilic addition of thiols is catalyzed by protic acids3 (H2SO4, HClO4 and p-TSA) and Lewis acids⁴ (AlCl₃, BF₃, TiCl₄, SnCl₄, ZnCl₂, SO₂). Recently, it was reported that thiols add onto olefins in an anti-Markovnikov fashion in the presence of acidic H-Rho zeolite.⁵ However, control experiments were not reported and, thus, the role of the zeolite catalyst when obtaining anti-Markovnikov products was not clearly defined. Although the Markovnikov addition of thiols onto carbon-carbon double bonds is well known, reactions onto styrenic substrates are noticeably rare, probably due to their facile polymerization under acidic conditions. Hence, it is of interest to develop new methods using catalysts with mild acidities to perform the addition reaction under truly heterogeneous conditions so the reactivity

of thiols towards styrene and its derivatives can be moderated. Commercially available Mont K 10 clay is one such material that can fulfill these requirements. In addition, clays have many advantages, such as ease of handling, non-corrosiveness, low cost and regeneration. Clays function as efficient catalysts for various organic transformations due to their Brønsted and Lewis acidities in both their natural and ion-exchanged forms.⁶ We became interested in the synthesis of dithiocarboxylic esters (3), which are used as chain-transfer agents for the synthesis of polymers with well-defined molecular polymerizations architectures in living-radical (reversible addition-fragmentation chain transfer, the RAFT process).^{7,8} Several procedures for the synthesis of dithioesters are known in the literature including: (i) alkylation of dithioacid salts,9 (ii) thiohydrolysis of imidothiolates,¹⁰ (iii) oxidative sulfuration of benzyl halides,¹¹ (iv) transesterification of dithioesters with thiols,¹² exchange of bis(thiocarbonyl) disulfides with azo compounds¹³ and condensation of thiols and alcohols with carboxylic acids in the presence of P_4S_{10} .^{14,15} How-

Scheme 1.

Keywords: addition reactions; alkenes; thiols; clays; sulfur compounds; chain-transfer agents; living-radical polymerization; reversible addition-fragmentation chain-transfer polymerization.

* Corresponding author. Fax: 518-276-6434; e-mail: benice@rpi.edu

0040-4039/01/\$ - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)00570-6

ever, they suffer from drawbacks such as expensive reagents, use of basic conditions and incompatibility of reactive functional groups (e.g. NO_2 , CN) under Grignard conditions. In this paper, we report the preparation of thiocarboxylic *S*-esters from olefins and thiobenzoic acids in the presence and absence of clay catalysts giving rise to Markovnikov and anti-Markovnikov addition products, respectively (Scheme 1).

Table 1 presents the results of the regioselective addition of thiophenol and thiobenzoic acid onto styrene both in the presence and absence of catalysts. For example, in the absence of any catalyst, the S–H addition takes place in an anti-Markovnikov fashion leading to the linear structure **1** in high yields. However, in the presence of Lewis acid-type catalysts, such as clays (e.g. AlCl₃, etc.), the S–H addition onto C=C proceeded in a Markovnikov manner giving branched structure **2** in high yields. A search of the literature revealed the lack of a systematic study carried out to establish the nature of the products resulting from the addition of thiophenol to olefins *in the absence of a catalyst*.¹⁶

Table 2 shows the results of the regioselective addition of thiophenol and thiobenzoic acid onto various olefins in the absence of any catalyst. All reactions were carried out in nitrogen using freshly distilled reagents to eliminate oxygen and peroxide impurities, respectively. Surprisingly, the addition of both thiophenol and thiobenzoic acid onto alkenes takes place in an anti-Markovnikov fashion leading to linear structures **1** either at 25 or 80°C with high conversions (>90%). To obtain more information on the nature of the intermediate, an experiment was carried out in the presence of galvinoxyl radical as a spin trap at 25°C under nitrogen. However, the addition reaction still proceeded to give a linear structure in high yields, thus eliminating the possibility of involvement of radical species. The formation of anti-Markovnikov products may be explained by presuming that the addition of S–H onto C=C bonds takes place in a concerted manner with steric factors controlling the regioselectivity.

Table 3 presents the results of the addition of various thiols and thiobenzoic acids onto a variety of olefins in the presence of Mont K 10 clay as the catalyst in refluxing benzene. Toluene was also used with equivalent results. Evidently, the addition of thiols or thioacids onto olefins in the presence of a clay catalyst proceeded largely in a Markovnikov fashion. However, in the case of aliphatic olefins (entries 12 and 13), considerable amounts of linear structures (30%) are formed. Also, poor selectivity to branched structures was observed in the case of 4-bromostyrene. Surprisingly, the addition of thiobenzoic acid onto methylmethacrylate in the absence or presence of acidic, basic or neutral clays gave, almost exclusively, anti-

Table 1. Regioselective addition of thiols/thioacids onto styrene^a

Entry	Thiols/thioacids	Catalyst	Conv. (%) ^b	Product distribution (%) ^b			
				1	2	Others ^c	
1	Thiophenol	None	95	97	2	1	
2	Thiophenol	Mont K 10	93	6	80^{d}	14	
3	Thiobenzoic acid	None	100	98	_	2	
4	Thiobenzoic acid	Mont K 10	97	3	89	8	
5	Thiobenzoic acid	Mont KSF	89	2	92	6	
6	Thiobenzoic acid	AlCl ₃	96	5	95	_	

^a Styrene (10 mmol), thiol/thioacid (10 mmol), catalyst (10% wt), benzene (25 ml), 80°C, 24 h.

^b Based on GC-MS analysis.

^c Mixtures of product, uncharacterized.

^d Identical results were obtained with recovered catalyst in a subsequent experiment.

Table 2. A	ddition of	thiols/thioacids	onto olefins	in the	absence of	f catalyst:	formation	of anti-Marko	ovnikov products ^a
------------	------------	------------------	--------------	--------	------------	-------------	-----------	---------------	-------------------------------

Entry	Olefin	Thiols/thioacids	Temp. (°C)	Conv. (%) ^b	Product distribution (%) ^b		
					1	2	Others ^c
1	Styrene	Thiophenol	25	97	94	2	4
2	Styrene	Thiophenol	80 ^d	99	98	2	_
3	Styrene	Thiobenzoic acid	25	94	97	_	3
4	Styrene	Thiobenzoic acid	80 ^d	92	95	3	2
5	1-Hexene	Thiobenzoic acid	25	93	80	5	15
6	4-Acetoxystyrene	Thiobenzoic acid	25	91	85	5	10
7	Methylmethacrylate	Thiobenzoic acid	25	96	93	2	5

^a Olefin (10 mmol), thiol/thioacid (10 mmol), benzene (25 ml), 24 h, N₂.

^b Based on GC-MS analysis, major products were thoroughly characterized by IR, ¹H and ¹³C NMR, and MS analyses.

^c Mixtures of product, uncharacterized.

^d 10 h.

Table 3. Addition of thiols/thioacids onto olefins in the presence of Mont K 10: formation of Markovnikov products^a

Entry	Olefins	Thiols/thioacids	Conv. (%) ^b	Product distribution (%) ^b			
				1	2	Others ^c	
1	Styrene	Thiophenol	97	6	89	5	
2	Styrene	2-Methylthiophenol	22	5	91	4	
3	Styrene	<i>t</i> -Butylthiol	74	31	59	10	
4	Styrene	Thiobenzoic acid	93	6	80	14	
5	Styrene	4-Methoxythiobenzoic acid	96	25	65	10	
6	Styrene	4-Bromothiobenzoic acid	90	5	70	25	
7	4-Methylstyrene	Thiobenzoic acid	76	25	41	34	
8	4-Methoxystyrene	Thiobenzoic acid	38	2	83	15	
9	4-Acetoxystyrene	Thiobenzoic acid	62	13	72	15	
10	4-Bromostyrene	Thiobenzoic acid	23	13	12	75	
11	α-Methylstyrene	Thiobenzoic acid	80	8	76	16	
12	1-Hexene	Thiobenzoic acid	85	30	61	9	
13	1-Octene	Thiobenzoic acid	76	30	62	8	

^a Olefin (10 mmol), thiol/thioacid (10 mmol), Mont K 10 (10% wt), benzene (25 ml), 80°C, 12 h.

^b Analyzed by GC-MS, major products were thoroughly characterized by IR, ¹H and ¹³C NMR, and MS analyses.

^c Mixtures of product, uncharacterized.

p-MeOPh (82%), p-BrPh (90%)

Scheme 2.

Markovnikov product. The formation of Markovnikov products can be explained by an initial activation of the olefins by Lewis acid sites present in the clay catalysts that generates the more stable benzylic carbocations. Subsequent attack of the sulfur nucleophile results in the formation of branched structures **2**.

Finally, the reaction of thiol esters 2 with Lawesson's reagent in refluxing toluene affords the dithiocarboxylic esters 3 in excellent purified yields (Scheme 2).

For the highly hindered thiocarboxylic esters, such as that obtained from α -methylstyrene and thiobenzoic acid (entry 11, Table 3), harsher conditions (dry xylene, 150°C, 48 h) resulted in an 82% yield (by GC–MS) of the corresponding dithiocarboxylic ester, which, upon purification by column chromatography (neutral alumina, eluting with 1:1 benzene:chloroform), gave 62% isolated yield.

In summary, we have shown that the addition of S-H onto C=C bonds takes place regioselectively giving branched or linear structures depending upon the presence or absence of a Lewis acid catalyst. Subsequent treatment of the thiocarboxylic S-esters with Lawesson's reagent provides a new, simple and efficient method for the preparation of branched or linear dithiocarboxylic esters **3** in high yields.

Typical experimental procedure

To a mixture of styrene (2.08 g, 0.02 mol) and Montmorillonite K 10 (208 mg, 10% wt) in benzene (40 ml) was added thiobenzoic acid (2.76 g, 0.02 mol). The mixture was refluxed for 12 h, cooled and the solid catalyst was removed by filtration. Distillation of benzene gave the crude product, which was further purified by column chromatography (neutral Al_2O_3 , eluting with toluene). The purity of the monothioester was found to be >99% (GC–MS). Isolated yield: 3.72 g, 77%.

A mixture of the monothioester (2.42 g, 0.01 mol) synthesized above and Lawesson's reagent (2.02 g, 0.005 mol) in toluene (40 ml) was refluxed for 3 h. The progress of the reaction was monitored by GC–MS. After the reaction was complete, it was cooled and the product purified by passing it through a column packed with neutral Al_2O_3 and eluting with toluene. Distillation of toluene gave dithioester (99.2% purity by GC–MS). Yield: 2.27 g, 88%.

References

- Curran, D. P. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.; Pergamon: New York, 1991; Vol. 4, pp. 715–777.
- 2. Griesbaum, K. Angew. Chem., Int. Ed. Engl. 1970, 9,

273-287.

- (a) Posner, T. Ber. 1905, 38, 646–657; (b) Screttas, C. G.; Micha-Screttas, M. J. Org. Chem. 1979, 44, 713–719; (c) Wolf, F.; Finke, H. Z. Chem. 1972, 12, 180–181.
- (a) Mukaiyama, T.; Izawa, T.; Saigo, K.; Takai, H. Chem. Lett. 1973, 355–356; (b) Belley, M.; Zamboni, R. J. Org. Chem. 1989, 54, 1230–1232.
- 5. Kumar, P.; Pandey, R. K.; Hegde, V. R. Synlett 1999, 1921–1922.
- Nikalje, M. D.; Phukan, P.; Sudalai, A. Org. Prep. Proceed. Int. 2000, 32, 1–40.
- Chong, Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. *Macromolecules* 1999, *32*, 2071–2074.
- De Brouwer, H.; Schellekens, M. A. J.; Klemperman, B.; Monteiro, M. J.; German, A. L. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 3596–3603.

- Meijer, J.; Vermeer, P.; Brandsma, L. Recueil 1973, 92, 601–604.
- Mayer, R.; Scheithauer, S. In *Houben-Weyl*; Falbe, J., Ed., 4th ed.; Georg Thieme: Stuttgart, 1985; Vol. E5, pp. 891–933.
- 11. Bost, R. W.; Sheally, O. L. J. Am. Chem. Soc. 1951, 73, 25–28.
- Leon, N. H.; Asquith, R. S. Tetrahedron 1970, 26, 1719– 1725.
- Thang, S. H.; Chong, Y. K.; Mayadunne, R. T. A.; Moad, G.; Rizzardo, E. *Tetrahedron Lett.* **1999**, *40*, 2435–2438.
- 14. Davy, H.; Metzner, P. Chem. Ind. 1985, 824.
- 15. Sudalai, A.; Kanagasabapathy, S.; Benicewicz, B. C. Org. Lett. 2000, 2, 3213–3216.
- Ipatieff, V. N.; Pines, H.; Friedman, B. S. J. Am. Chem. Soc. 1938, 60, 2731–2734.